Home
Class 11
MATHS
logx(9x^2).log3^2(x)=4...

`log_x(9x^2).log_3^2(x)=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation : log_3 x+log_9 (x^2)+log_27 (x^3)=3

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

Solve 3^((log_(9)x)^(2)-9/2log_(9)x+5)= 3 sqrt3.