Home
Class 11
MATHS
sqrt(log2(2x^2)dotlog4(16 x))=log4x^3...

`sqrt(log_2(2x^2)dotlog_4(16 x))=log_4x^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of Integral values of x 'satisfying sqrt((log_(2)x+log_(x)(16x)-5)(log_(2)x))+sqrt((log_(2)x+log_(x)(2x)-3)(log_(2)x))=1 is

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

Solve for x :(log)_2(4(4^x+1))dotlog_2(4^x+1)=(log)_(1/(sqrt(2)))1/(sqrt(8)) .

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))