Home
Class 12
MATHS
If alpha is a root of x^4 = 1 with negat...

If `alpha` is a root of `x^4 = 1` with negative principal argument then the principal argument of `Delta(alpha) = |(1,1,1), (alpha^n, alpha^(n+1), alpha^(n+3)), (1/alpha^(n+1), 1/alpha^n, 0)|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

cos(n+1) alpha * cos(n-1)alpha + sin (n+1)alpha * sin (n-1) alpha =

If alpha=root(3)(1) and alpha is not real then alpha^(3n+1)+alpha^(3n+3)+alpha^(3n+5) has the value

( sin(n+1) alpha - sin (n-1)alpha )/( cos (n+1) alpha + 2 cos n alpha + cos (n-1) alpha )=

Let Delta_(alpha)=det[[(alpha-1),n,6(alpha-1)^(2),2n^(2),4n-2(alpha-1)^(3),3n^( 3),3n^(2)-3n]]

Prove that : sum_(r=1)^n tanr alpha* tan(r+1) alpha = cot alpha*tan(n+1) alpha -n -1

If a is a non-real fourth root of unity, then the value of alpha^(4n-1)+alpha^(4n-2)+alpha^(4n-3), n in N is

If a is a non-real fourth root of unity, then the value of alpha^(4n-1)+alpha^(4n-2)+alpha^(4n-3), n in N is

(1)/(cos alpha+cos3 alpha)+(1)/(cos alpha+cos5 alpha)...(.1)/(cos alpha+cos(2n+1)alpha)