Home
Class 11
MATHS
1/2log10 x+3log10sqrt(2+x)=log10sqrt(x(x...

`1/2log_10 x+3log_10sqrt(2+x)=log_10sqrt(x(x+2))+2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satifying (log)_(10)sqrt(1+x)+3(log)_(10)sqrt(1-x)=(log)_(10)sqrt(1-x^(2))+2 is a.0

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

Value of x satifying (log)_(10)sqrt(1+x)+3(log)_(10)sqrt(1-x)=(log)_(10)sqrt(1-x^2)+2 is a. 0ltxlt1 b. -1ltxlt1 c. -1ltxlt0 d. None of this

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x