Home
Class 12
MATHS
[" 34.If "x^(x)+y^(x)=1" ,prove that: "]...

[" 34.If "x^(x)+y^(x)=1" ,prove that: "],[(dy)/(dx)=-[(x^(x)(1+log x)+y^(x)*log y)/(x*y^((x-1)))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))