Home
Class 12
MATHS
int0^pi(xsecxtanx)/(1+sec^2x)dx=(pi^2)/4...

`int_0^pi(xsecxtanx)/(1+sec^2x)dx=(pi^2)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/3) (secxtanx)/(1+sec^2x)dx

int_0^(pi/3) (secx tanx)/(1+sec^2x)dx

int_(0)^( pi)(x tan x)/(tan x+sec x)*dx=(pi(pi-2))/(2)

int_(0)^( pi)x(tan x)/(sec x+cos x)dx=(pi^(2))/(4)

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)

Evaluate int_(0)^(pi/(3))(sec x tan x)/(1+sec^(2)) x dx

The value of int_(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^(x^7)))dxi s (a) 1/3tan^(-1)sqrt(2) (b) 1/(3sqrt(2))tan^(-1)sqrt(2) (c) int_0^(pi/4)(sec^2dx)/(sec^2x+tan^2x) (d) 1/3int_0^(pi/4)(sec^2x dx)/(sec^2x+tan^2x)

int_(0)^((pi)/(4))(sec x)/(1+2sin^(2)x)dx

int_(0)^(pi//4) (1)/(1+cos 2x)dx