Home
Class 12
MATHS
lim(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-c...

`lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr pi/2) (a^(cotx)-a^(cosx))/(cotx-cosx), a gt 0 is equal to

Solve the limit ; lim_(xto pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx) is equal to

Lt_(xrarr(pi)/(2))(a^cotx -a^cosx)/(cotx-cosx),agt0

Lt_(x to pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx)=

lim_(xrarr0)(e^cotx-e^cosx)/(cotx-cosx) is

("lim")_(xvecpi/2)(a^(cotx)-a^(cosx))/(cotx-cosx)i se q u a lto ln a (b) a (c) lna/2 (d) does not exist

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then solve it

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then solve it

lim_(xrarr0) (cosecx-cotx)