Home
Class 12
MATHS
The value of lim(n to oo) sum(r=1)^(n)(...

The value of `lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to