Home
Class 12
MATHS
[" (C) "(3)/(sqrt(114))(8vec i-7j-k)quad...

[" (C) "(3)/(sqrt(114))(8vec i-7j-k)quad " (D) "bar(sqrt(114))(-pi+6)-n" ) "],[" ial to "11." Vector "bar(x)" satisfying the relation "vec A*vec X=vec C" and "bar(A)timesbar(X)=vec B],[|0quad " is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec x satisfying the relation vec A*vec x=c and vec B xxvec x=vec B is :

Vector vec x satisfying the relation bar(A)*bar(x)=c and bar(A)xxbar(x)=B

If vec a = j-k and vec c = i-j-k . Then the vector vec b satisfying vec a xx vec b + vec c = vec 0 and vec a. vec b = 3 is

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Let vec a=hat j-hat k and vec c=hat i-hat j-hat k. Then the vector b satisfying vec axvec b+vec c=0 and vec a*vec b=3, is