Home
Class 11
MATHS
If |z+2i|<=2, then then the greatest val...

If `|z+2i|<=2`, then then the greatest value of `|z-sqrt(3)+i|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S = {z in C : |z - 2| = |z + 2i| = |z - 2i|} then sum_(z in S) |z + 1.5| is equal to _________

If |z+i|^2-|z-i|^2=3 then the locus of z is

If |z+i|^2−|z−i|^2 =3 then the locus of z is

If |z+i|^2−|z−i|^2 =4 then the locus of z is

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|