Home
Class 12
MATHS
lf A=[(-4,-1),(3,1)] ,then the determin...

lf `A=[(-4,-1),(3,1)]` ,then the determinant of the matrix `(A^(2016)-2A^(2015)-A^(2014))` is (A) 2014 (B) -175 (C) 2016 (D) -25

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[(-4,-1),(3,1)] then the determinant of the matrix (A^(2016)-2.A^(2-15)-A^(2014)) is

If A=[[-4,-13]] ,then the determinant of the matrix (A^(2016)-2A^(2015)-A^(2014)) is (A) 2014(B)-175(C)2016(D)-25

If {:A=[(-4,-1),(3,1)]:} , then the determint of the matrix (A^2016-2A^2015-A^2014) ,is

If {:A=[(-4,-1),(3,1)]:} , then the determint of the matrix (A^2016-2A^2015-A^2014) ,is

If A=[[6,112,4]] then the determinant of A^(2015)-6A^(2014) is

Matrix A is given by A=[[6,11],[2,4]] then the determinant of A^(2015)-6A^(2014) is

((1+i)^2016)/(1-i)^2014 =

((1+i)^2016)/((1-i)^2014)=

If x+(1)/(x)=2, value of x^(2014)-(1)/(x^(2014)) is :

If alpha is the only positive root of (2^(2014)-1)x^2+(2-2^(2014))x-1=0 . Then the value of (alpha^(2014)-1)p^2+(1-alpha^(2015))p q+1 is equal to (a) 1 (b) 0 (c) pq (d) p^2+p q+1