Home
Class 12
MATHS
lim(x rarr1)(x sin(x-[x]))/(x-1) ,where ...

`lim_(x rarr1)(x sin(x-[x]))/(x-1)` ,where [.]denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)