Home
Class 12
MATHS
If [bar(a) bar(b) bar(c)]=2 then [2(bar(...

If `[bar(a) bar(b) bar(c)]=2` then `[2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

For any vector bar(a) ,the vector (bar(a)timesbar(i))^(2)+(bar(a)timesbar(j))^(2)+(bar(a)timesbar(k))^(2) is equal to A) 3|bar(a)|^(2) B) |bar(a)|^(2) C) 2|bar(a)|^(2) D) 4|bar(a)|^(2)

Let bar(a),bar(b),bar(c) be three non-zero vectors such that bar(a)+bar(b)+bar(c)=0 .Then lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0 where lambda is

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

If |bar(a)| =2 and |bar(b)|=3 and bar(a).bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))|-

If |bar(a)| =2 and |bar(b)|=3 and bar(a) .bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))| (A) 16 (B) 32 (C) 48 (D) 0

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

(bar(a)times(bar(b)+bar(c))+bar(b)times(bar(c)+bar(a))+bar(c)times(bar(a)+bar(b)))*(bar(a)timesbar(b))|= (A) |bar(b)timesbar(c)| (B) |bar(c)timesbar(a)| (C) |bar(a)timesbar(b)+bar(b)timesbar(c)+(bar(c)timesbar(a))| (D) 0

If [bar(a)bar(b)bar(c)]=1 then (bar(a)(bar(b)xxbar(c)))/((bar(c)xxbar(a))*bar(b))+(bar(b)*(bar(c)xxbar(a)))/((bar(a)xxbar(b))*bar(c))+(bar(c)(bar(a)xxbar(b)))/((bar(b)xxbar(c))*bar(a))