Home
Class 12
MATHS
यदि f: R rarr R इस तरह से परिभाषित हो कि...

यदि `f: R rarr R` इस तरह से परिभाषित हो कि `f(x)=2x+3" तो "f^(-1)(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f:R rarr R be defined by f(x)=x^(2)-3x+4 for the x in R then f^(-1)(2) is

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

If f:R rarr R is given by f(x)=3x-5 then f^(-1)(x)

If f:R rarr R and g:R rarr R defined by f(x)=2x+3 and g(x)=x^(2)+7 then the values of x for which f(g(x))=25 are

If function f : R rarr R^(+), f(x) = 2^(x) , then f^(-1) (x) will be equal to

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

Let R be the set of real numbers and the functions f:R rarr R and g:R rarr R be defined by f(x)=x^(2)+2x-3 and g(x)=x+1 Then the value of x for which f(g(x))=g(f(x)) is

If f:R rarr R be defined by f(x)=x^(2)+1 then find f^(-1)(17) and f^(-1)(-3)