Home
Class 12
MATHS
If tan^(-1)(alpha+i beta)=a+ib, then a= ...

If `tan^(-1)(alpha+i beta)=a+ib,` then `a= `
1).`(1)/(2)tan^(-1)((2 alpha)/(1-alpha^(2)-beta^(2)))`
2) .`(1)/(2)tan^(-1)((2 alpha)/(1+alpha^(2)+beta^(2)))`
3). `tan^(-1)((2 alpha)/(1-alpha^(2)-beta^(2)))`
4). `(1)/(2)tan^(-1)((2 beta)/(1+alpha^(2)+beta^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (alpha^(3))/(2)csc^(2)((1)/(2)tan^(-1)(alpha)/(beta))+(beta^(2))/(2)sec^(2)((1)/(2)tan^(-1)(beta)/(alpha))=(alpha+beta)(a^(2)+beta^(2))

The value of (alpha^(3))/(2)csc^(2)((1)/(2)tan^(-1)(alpha)/(beta))+(beta^(3))/(2)sec^(2)((1)/(2)tan^(-1)((beta)/(alpha))) is equal to (alpha+beta)(alpha^(2)+beta^(2))(b)(alpha+beta)(alpha^(2)-beta^(2))(alpha+beta)(alpha^(2)+beta^(2))(d) none of these

Show that cos^(-1)((cos alpha+cos beta)/(1+cos alpha cos beta))=2tan^(-1)(tan((alpha)/(2))tan((beta)/(2)))

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

Prove that: (alpha^3)/2cos e c^2(1/2tan^(-1)(alpha/beta))+(beta^3)/2s e c^2(1/2tan^(-1)(beta/alpha))=(alpha+beta)(alpha^2+beta^2) .

If sin (alpha + beta)=1, sin (alpha- beta)= (1)/(2) , then tan (alpha + 2beta) tan (2alpha + beta) =

If tan(alpha+beta)=n tan(alpha-beta) then show that (n+1)sin2 beta=(n-1)sin2 alpha

Solve : sin^(-1)((2alpha)/(1+alpha^2)) + sin^(-1)( (2beta)/(1+beta^2)) =2 tan^(-1) x, |alpha|le1, |beta|le1