Home
Class 12
MATHS
If z(1) and z(2) are two complex numbers...

If `z_(1)` and `z_(2)` are two complex numbers,then
`(A) 2(|z|^(2)+|z_(2)|^(2)) = |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)`
`(B) |z_(1)+sqrt(z_(1)^(2)-z_(2)^(2))|+|z_(1)-sqrt(z_(1)^(2)-z_(2)^(2))| = |z_(1)+z_(2)|+|z_(1)-z_(2)|`
`(C) |(z_(1)+z_(2))/(2)+sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2)-sqrt(z_(1)z_(2))|=|z_(1)|+|z_(2)|` `(D) |z_(1)+z_(2)|^(2)-|z_(1)-z_(2)|^(2) = 2(z_(1)bar(z)_(2)+bar(z)_(1)z_(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(-)1 and z_(-)2 are any two complex numbers show that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2|z_(1)|^(2)+2|z_(2)|^(2)

If z_(1) and z_(2) are two complex numbers and c>0, then prove that |z_(1)+z_(2)|^(2)<=(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)

If z_(1) and z_(2) are two complex numbers then prove that |z_(1)-z_(2)|^(2)<=(1+k)z_(1)^(2)+(1+(1)/(k))z_(2)^(2)

If z_(1) and z_(2) are two complex numbers and c>0 then prove that (z_(1)+z_(2))^(2)<=(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)

If z_(1) and z_(2), are two complex numbers such that |z_(1)|=|z_(2)|+|z_(1)-z_(2)|,|z_(1)|>|z_(2)|, then

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

If z_(1) and z_(2) are two complex numbers such that z_(1)+2,1-z_(2),1-z, then