Home
Class 12
MATHS
If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25...

If `z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1),` then what is the fundamental amplitude of `(z-sqrt2)/(z-sqrt2)` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=x+iy=z=x+iy=((1)/(sqrt(2))-(i)/(sqrt(2)))^(-25) ,where i=sqrt(-)1, then what is the fundamental amplitude of (z-sqrt(2))/(z-i sqrt(2))?

If z=(sqrt(3)+i)/(sqrt(3)-i) , then the fundamental amplitude of z is :

If Z=1+i , where i=sqrt(-1) , then what is the modulus of Z+(2)/(Z) ?

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to