Home
Class 12
MATHS
The normal at a point P on the ellipse x...

The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of `M` intersects the latus rectums of the given ellipse at points. `(+-((3sqrt(5)))/2+-2/7)` (b) `(+-((3sqrt(5)))/2+-(sqrt(19))/7)` `(+-2sqrt(3),+-1/7)` (d) `(+-2sqrt(3)+-(4sqrt(3))/7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a) (+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c) (+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a) (+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c) (+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a) (+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c) (+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a)(+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c)(+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

The normal at a point P, on the ellipse x^2+4y^2=16 meets the x-axis at Q. If M is the mid-point of the line segment PQ, then the locus of M intersects the latus-rectum of the given ellipse at the points :

The normal at a point P on the ellipse x^(2)+4y^(2)=16 meets the x-axisat Q. If M is the mid-point of the line segment PQ, then the locus of M intersects the latus-rectum of the given ellipse at the points :

(2sqrt(7))/(sqrt(5)-sqrt(3))

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))