Home
Class 12
MATHS
If 3^n is a factor of the determinant |{...

If `3^n` is a factor of the determinant `|{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}|` then the maximum value of n is ……..

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^n is a factor of the determinant [[1,1,1],[n C_(1),(n+3) C_(1) ,(n+6) C_(1) ],[n C_(2) ,(n+3) C_(2) ,(n+6) C_(2)]] then the maximum value of n is

The greatest value of n for which the determinant Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))| is divisible by 3^(n) , is

The greatest value of n for which the determinant Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))| is divisible by 3^(n) , is

If "^(n+1)C_3 = 2 "^nC_2 , then n=

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

Delta[[ Prove that ,, 11,1,1nC1,(n+1)C1,(n+2)C1(n+1)C2,(n+2)C2,(n+3)C2]]=1

If .^(n+1)C_(r+1.): ^nC_r: ^(n-1)C_(r-1)=11:6:3 find the values of n and r.

If ^(n+1)C_(r+1): ^nC_r: ^(n-1)C_(r-1)=11:6:2 find the values of n and r.