Home
Class 11
MATHS
[" If "bar(a),vec b,bar(c)" are unit vec...

[" If "bar(a),vec b,bar(c)" are unit vectors,then the value of "],[|2bar(a)-3bar(b)|^(2)+|2bar(b)-3bar(c)|^(2)+|2bar(c)-3bar(a)|^(2)" cannot be equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(a),bar(b) and bar( c ) are unit vectors. The value of |bar(a)-bar(b)|^(2)+|bar(b)-bar( c )|^(2)+|bar( c )-bar(a)|^(2) is not expected ………………

Suppose bar(a), bar(b), bar(c) be three unit vectors such that |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2) is equal to 3 . If bar(a), bar(b), bar(c) are equally inclined to each other at an angle:

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are

If bar(a), bar(b), bar(c) are linearly independent vectors, then show that bar(a)-3bar(b)+2bar(c), 2bar(a)-4bar(b)-bar(c), 3bar(a)+2bar(b)-bar(c) are linearly independent.

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

If bar(a),bar(b),bar(c ) are mutually perpendicular unit vectors, then find [bar(a)bar(b)bar(c )]^(2) .

The value of [(bar(a)+2bar(b)-bar(c))(bar(a)-bar(b))(bar(a)-bar(b)-bar(c))] is equal to the box product

bar(a) and bar(b) are unit vectors. |bar(a)+bar(b)|=sqrt(3) then the value of (3bar(a)-4bar(b)).(2bar(a)+5bar(b)) = ……………