Home
Class 12
MATHS
[" If "cos x=(1)/(sqrt(1+t^(2)))" and "s...

[" If "cos x=(1)/(sqrt(1+t^(2)))" and "sin y=(t)/(sqrt(1+t^(2)))" then "(dy)/(dx)" is: "],[[" (a) "1," (b) "-1," (c) "(1)/(1+t^(2))," (d) "(1-t)/(1+t^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to

If x=cos^-1(1/(sqrt(1+t^2))) , y=sin^-1(1/(sqrt(t^2+1))) then dy/dx is independent of t.

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1