Home
Class 12
MATHS
If int(0)^(pi)xf(sinx)dx=A int(0)^(pi//2...

If `int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx`, then A is

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)f(sinx)dx , then A is equal to a)0 b) pi c) (pi)/(4) d) 2pi

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)(sinx)dx, then A is

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

int_(0)^(pi//2)log(sinx)dx=

int_(0)^(2pi)|sinx|dx=?