Home
Class 12
MATHS
If y=(tan^(-1)x)^2 , then prove that (1+...

If `y=(tan^(-1)x)^2` , then prove that `(1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=[tan^-1 x]^2 , then prove that : (x^2 + 1)^2 y_2+2x(x^2+1) y_1 = 2 .

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .

If y=(sin^(-1)x)^2 ,prove that (1-x^2)y_2-x y_1-2=0.

If y=e^(tan^(-1)x) , prove that (1+x^2)y_2+(2x-1)y_1=0 .

If y = tan^(-1) x, prove that (1 + x^2)y_2 + 2xy_1 = 0

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .