Home
Class 11
MATHS
If A + B + C = (pi)/(2), prove that si...

If A + B + C `= (pi)/(2)`, prove that
sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=(pi)/(2) ,prove that: sin 2A+"sin" 2B+"sin" 2C=4 cosA cos B cos C.

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C-1)= 8 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .