Home
Class 12
MATHS
इन समीकरण हो हल कीजिये cos(tan^(-1)x)=s...

इन समीकरण हो हल कीजिये `cos(tan^(-1)x)=sin(cot^(-1)""3/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : cos(tan^(-1)x)=sin(cot^(-1)""(3)/(4))

Solve cos(tan^-1x) = sin(cot^-1 (3/4))

Solve for x : cos(tan^(-1)x)=sin(cot^(-1)\ 3/4)

cos[tan^(-1) {sin(cot^(-1) x)}] =

cos [ tan^(-1){sin (cot^(-1)x)}] =

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

tan (cos ^(-1) x) = sin (cot ^(-1) ""(1)/(2))

Slove: tan(cos^-1x)=sin(cot^-1""1/2)

Solve for x:cos(tan^(-1)x)=sin(cot^(-1)backslash(3)/(4))

Solve the equation cos(tan^(-1)x)=sin("cot"^(-1)3/4)