Home
Class 14
MATHS
" If "y=sin(m sin^(-1)x)" : hen prove th...

" If "y=sin(m sin^(-1)x)" : hen prove that "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(m sin^-1x) , Hence prove that (1-x^2)(d^2y)/dx^2-xdy/dx+m^2y=0 .

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .

If y = sin (m sin^(-1) x), prove that (1 - x^2)y_2 -xy_1 + m^2 y = 0

If y=sin(msin^-1x) , prove that (1-x^2)y_2-xy_1+m^2y=0

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=sin(m sin^-1x) , Find dy/dx .

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x