Home
Class 10
MATHS
If x<0 and x^4+1/x^4=47 , then the value...

If `x<0` and `x^4+1/x^4=47` , then the value of `x^3+1/x^3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a+x, a-x, a-x),(a-x,a+x,a-x),(a-x,a-x,a+x)|=0 then

If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)):}| then

Using the properties of determinants, solve the following for x |{:(a+x,a-x,a-x),(a-x,a+x,a-x),(a-x,a-x,a+x):}|=0

Using properties of determinants, solve for x:|[a+x, a-x, a-x],[ a-x, a+x, a-x],[ a-x, a-x, a+x]|=0

Using properties of determinants, solve for x:|[a+x, a-x, a-x], [a-x, a+x, a-x], [a-x, a-x ,a+x]|=0

Using properties of determinants, solve for x:|[a+x, a-x, a-x],[ a-x, a+x, a-x],[ a-x, a-x, a+x]|=0

If |(a +x,a -x,a -x),(a -x,a +x,a -x),(a -x,a -x,a +x)| = 0 , then x is equal to

Using properties of determinants solve the following for x, |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=0