Home
Class 14
MATHS
" If "sum(k=0)^(200)i^(k)+prod(p=1)^(50)...

" If "sum_(k=0)^(200)i^(k)+prod_(p=1)^(50)i^(p)=x+iy" then"(x,y)is

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then z=sum_(k=1)^(60)omega^(k) - prod_(k=1)^(30)omega^(k) is equal to

If I=sum_(k=2)^(10)int_(k)^(k^(2))(k-1)/(x(x-1))dx, then

If I=sum_(k=1)^(98)int_(k)^(k+1)(k+1)/(x(x+1))dx , then

Y = sum_ (k = 0) ^ (5) x ^ (k) a ^ (k-1)

If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

If int _(0)^(1) (sum _(r=1) ^(2013)(x)/(x ^(2)+r ^(2)) prod_(r=1)^(2013)(x ^(2) +r ^(2) )) dx =1/2 [(prod_(r=1)^(2013)(1+r ^(2)))-k^(2)] then k=

If int _(0)^(1) (sum _(r=1) ^(2013)(x)/(x ^(2)+r ^(2)) prod_(r=1)^(2013)(x ^(2) +r ^(2) )) dx =1/2 [(prod_(r=1)^(2013)(1+r ^(2)))-k^(2)] then k=

If ((1+i)/(1-i))^(100)=x +iy then (x,y) = .......

The sum and sum of squares corresponding to length x (in cm) and weighty (k. gm) of 50 plant products are given below: sum_(i=1)^(50) x_(i) = 212 , sum_(i=1)^(50) x_(i)^(2)=902.8 , sum_(i=1)^(50) y^(i)=261 , sum_(i=1)^(50) y_(i)^(2)=1457.6 Which is more varying , the length or weight ?