Home
Class 12
MATHS
If alpha=int(0)^(1) e^(3x+3tan^(-1)x((12...

If `alpha=int_(0)^(1) e^(3x+3tan^(-1)x((12+9x^(2))/(1+x^(2)))dx`, where `tan^(-1)` takes principal values, then the value of
`(log_(e )|1+alpha|-(3pi)/(4))`,is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=int_(0)^(1)(e^(9x+3tan^(-1)x)((12+9x^(2))/(1+x^(2)))dx where tan^(-1)x takes only principal values, then the value of (log_(e)|1+alpha|-(3pi)/(4)) is-

If alpha=int_(0)^(1)(e^(9x+3tan^(-1)x))((12+9x^(2))/(1+x^(2)))dx wheretan ^(-1) takes only principal values,then the value of (log_(e)|1+alpha|-(3 pi)/(4))is

If alpha=int_0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)x takes only principal values, then, find the value of ((log)_e|1+alpha|-(3pi)/4)

If alpha=int_0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1) takes only principal values, then the value of ((log)_e|1+alpha|-(3pi)/4)i s

If alpha=int_0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-1) takes only principal values, then the value of ((log)_e|1+alpha|-(3pi)/4)i s

If alpha=int_0^1(e^(9x+3tan^-1x))((12+9x^2)/(1+x^2))dx where tan^-1x takes only principal value, then the value of (log_eabs(1+alpha)-(3pi)/4) is

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int(e^(ln tan^(-1)x))/(1+x^(2))dx

The value of int e^(tan-1)x((1+x+x^(2))/(1+x^(2)))dx