Home
Class 11
MATHS
The reciprocal of 2/(log4(2000)^6)+3/(l...

The reciprocal of `2/(log_4(2000)^6)+3/(log_5(2000)^6)` is

Text Solution

Verified by Experts

Let `N = 2 log_(x) 4+3 log_(x) 4+3 log_(x) 5," where " x = (2000)^(6)`
` = log_(x) 4^(2) + log_(x) 5^(3)`
` = log_(x) 4^(2) * 5^(3) `
` = log_(x) 4^(2) * 5^(3) `
` = log_((2000)^(6))(2000)`
` = 1/6`
Hence, the reciprocal of given value is 6.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of [2/log_4(2000)^6+3/log_5(2000)^6]

Value of [2/((log)_4(2000)^6)+3/((log)_5(2000)^6)] is a. 4^(1/3). 5^(1/2) b. 1/6 c. 3 3 d. none of these

Value of [2/((log)_4(2000)^6)+3/((log)_5(2000)^6)] is 4^(1/3). 5^(1//2) b. 1/6 c. 3 3 d. none of these

Value of [(2)/(log_(4)(2000)^(6))+(3)/(log_(3)(2000)^(6))] is 4^((1)/(3)).5^((1)/(2))(b)(1)/(6)(c)root(3)(4)(d) none of these

(log_(5)6) /(log_(5)2 + 1) =

(log_(2)3)(log_(1/3)5)(log_(4)6)<1

Let p=((log_2 2000)(log_5 2000)-4(log_5 2000))/(log_2 2000). Find p in N

6^(log_6 5)+3^(log_9 16)=

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If x=prod_(n=1)^(2000)n , then the value of the expression, 1/(1/((log)_2x)+1/((log)_3x)++1/((log)_(2000)x))i s dot