Home
Class 9
MATHS
" (ii) "f(x)=3x^(4)-5x^(3)+x^(2)+8...

" (ii) "f(x)=3x^(4)-5x^(3)+x^(2)+8

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

(i) If f(x) = 3x^(4)- 5x^(2) + 7, " find " f(x-1) (ii) If f(x) = x^(2) - 3x + 4 , then find the values of x satisfying f(x) = f(2x+1)

Let f(x)=x^(8)-6x^(7)+5x^(6)+x^(4)-5x^(3)-x^(2)-3x+3AA x in R then f(5) is equal to :-

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

f:R rarr R,f(x)=(2x^(2)-5x+3)/(8x^(2)+9x+11), then f is

Divide 3x^(4)-5x^(3)-2x^2-8x+3 by x^(2)+5x+3

If f(x)= 3x^(4)- 5x^(2) + 9 then find f(x-1) .

f(x)=3x^(4)-.5x^(2)+7, find f(x-1)

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR