Home
Class 11
MATHS
" If "(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2)...

" If "(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+....upto oo=(pi^(2))/(6)," then "(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+...=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(1^(2)) + (1)/(2^(2)) + (1)/(3^(2)) + …..oo= (pi^(2))/(6) then (1)/(1^(2)) + (1)/(3^(2)) + (1)/(5^(2))+ ….=

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...*to oo=(pi^(2))/(6), then (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+... equals pi^(2)/8 b.pi^(2)/12 c.pi^(2)/3 d.pi^(2)/2

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))......oo=(pi^(2))/(6) then (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))...=

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+cdots "to" oo = (pi^(2))/(6) then (1)/(1^(2)) +(1)/(3^(2))+(1)/(5^(2))+cdots equals

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=

If (1)/(1^(2))+(2)/(2^(2))+(3)/(3^(2))+...oo=(pi^(2))/(6) implies (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+...oo=(pi^(2))/(k) then k=

If the value of (1+(2)/(3)+(6)/(3^(2))+(10)/(3^(3))+...."upto "oo)^(log_((0.25))((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....."upto "oo) is l , then l^(2) is equal to _______.

Find sum: (1)/(2) + (1)/(3^(2)) + (1)/(2^(3)) + (1)/(3^(4)) + (1)/(2^(5)) + (1)/(3^(6))+ …..oo