Home
Class 12
MATHS
(3x+5)/(x^(3)-x^(2)-x+1)quad 10...

(3x+5)/(x^(3)-x^(2)-x+1)quad 10

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Find the approximate values of : f(x)=x^(3)+5x^(2)-7x+10" at "x=1.1 .

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

Let f:RtoR be given by f(x)={{:(x^(5)+5x^(4)+10x^(3)+3x+1,xlt 0),(x^(2)-x+1,0 le x lt1),((2//3)x^(3)-4x^(2)+7x-(8//3),1 le x lt3),((x-2)ln(x-2)-x+(10//3),x ge 3):} Then which of the following options is/are correct?

If f(x)=3x^(3)-5x^(2)+10 , find f(x-1) .

Resolve (2x^(2)+5x-1)/(x^(2)-3x-10) into partial fractions.

Divide (2x^(3)-3x^(2)-10x+5) by (2x-3) and write the quotient and the remainder.

sgn(x^(3)-4x^(2)+3x)=1,x in z and x in{-5,10} then number of possible value of x is :