Home
Class 12
MATHS
Let y = f(x), f : R ->R be an odd differ...

Let y = f(x), `f : R ->R` be an odd differentiable function such that `f'''(x)>0` and `g(alpha,beta)=sin^8alpha+cos^8beta+2-4sin^2alpha cos^2 beta` If `f''(g(alpha, beta))=0` then `sin^2alpha+sin^2beta` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :

(sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.