Home
Class 12
MATHS
सिद्ध कीजिए। |(x+a,x,x),(x,x+a,x),(x,x...

सिद्ध कीजिए।
`|(x+a,x,x),(x,x+a,x),(x,x,x+a)|=a^(2)(3x+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

|[x+4,x,x] , [x,x+4,x] , [x,x,x+4]|=16(3x+4)

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

If f(x) = |(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| , then f^(1)(x)=

The constant term of the polynomial |(x+3,x,x+2),(x,x+1,x-1),(x+2,2x,3x+1)| is

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

Using the properties of determinants, prove that following : |{:(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(x-1)):}|=6x^(2)(1-x^(2))

The constant term of the polynormial {|:(x+3,x,x+2),(x,x+1,x-1),(x+2,2x,+3x+1):|} is