Home
Class 11
MATHS
If x=logb a , y=logc b , z=loga c then x...

If `x=log_b a , y=log_c b , z=log_a c` then xyz=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

IF a^x=b,b^y=c,c^z=a,x=log_b a^(k1),y=log_c b^(k2),z=log_a c^(k3) , find the minimum value of 3k_1+6k_2+12k_3 .

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot