Home
Class 12
MATHS
If x=2+ 5i then the value of x^3-5x^2+33...

If `x=2+ 5i` then the value of `x^3-5x^2+33x-19` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= 2+5i (where i^2 =-1) and 2(1/(1!9!)+1/(3!7!))+1/(5!5!)=2^a/(b!) , then the value of (x^3 - 5x^2 + 33x - 19) is equal to

If x= 2+5i (where i^2 =-1) and 2(1/(1!9!)+1/(3!7!))+1/(5!5!)=2^a/(b!) , then the value of (x^3 - 5x^2 + 33x - 19) is equal to

If x=2+5i (where i^(2)=-1) and 2((1)/(1!9!)+(1)/(3!7!))+(1)/(5!5!)=(2^(a))/(b!) ,then the value of (x^(3)-5x^(2)+33x-19) is equal to

If x= 1+2i , the value of x^3+2x^2-3x+5 =

If x=2+5i then the value of the expression x^3-5x^2+33x-49 is

If x=2+5i then the value of the expression x^(3)-5x^(2)+33x-49 is

If 2x=3+5i, then what is the value of 2x^(3)+2x^(2)-7x+72 ?