Home
Class 12
MATHS
If u=sqrt(a^2 cos^2 theta + b^2sin^2thet...

If `u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta^2),` then the difference between the maximum and minimum values of `u^2` is given by : (a) `(a-b)^2` (b) `2sqrt(a^2+b^2)` (c) `(a+b)^2` (d) `2(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta), then the difference between the maximum and minimum values of u^2 is given by :

If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta), then the difference between the maximum and minimum values of u^2 is given by : (a) (a-b)^2 (b) 2sqrt(a^2+b^2) (c) (a+b)^2 (d) 2(a^2+b^2)

If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta), then the difference between the maximum and minimum values of u^2 is given by : (a) (a-b)^2 (b) 2sqrt(a^2+b^2) (c) (a+b)^2 (d) 2(a^2+b^2)

If u = sqrt( a^2cos^2 theta +b^2 sin ^2 theta ) + sqrt( a^2 sin^2 theta +b^2 cos^2 theta ) then the difference between the maximum and manimum values of u^2 is given by

If u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta) , then the difference between the maximum and minimum values of u^(2) is given by :

If u = sqrt(a^(2) cos^(2)theta + b^(2) sin^(2)theta) + sqrt(a^(2) sin^(2)theta + b^(2) cos^(2)) , then the difference between the maximum and minimum values of u^(2) is given by :

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta) then the difference between maximum and minimum values of u^(2) is