Home
Class 12
MATHS
[" The value of "sum(i=1)^(n)int(0)^(1)f...

[" The value of "sum_(i=1)^(n)int_(0)^(1)f(r-1+x)dx" is equal io "],[[" (A) "int_(0)^(1)f(x)dx," (B) "n int_(0)^(1)(x)dx],[" (C) "int_(0)^(1)(n-1)dx," (D) "int_(0)^(n)(x)dx]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

The value of sum_(x=1)^(n)(-1)^(r+1)(C(n,r))/(r+1) is equal to

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

The value of sum_(i=0)^(r)C(n_(1),r-i)C(n_(2),i) is equal to

The value of sum_(n=1)^100 int_(n-1)^n e^(x-[x])dx =

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx