Home
Class 11
MATHS
If a1,a2,a3, ,an are an A.P. of non-...

If `a_1,a_2,a_3, ,a_n` are an A.P. of non-zero terms, prove that `1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)=(n-1)/(a_1a_n)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If a_1, a_2, a_3 ….. a_n are in AP, then prove that frac(1)(a_1 a_2)+frac(1)(a_2 a_3)+frac(1)(a_3 a_4)+.....+frac(1)(a_(n-1) a_n)=frac(n-1)(a_1 a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+......+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(11+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is