Home
Class 12
MATHS
If x=sint, y=cos 2t then prove that (dy)...

If x=sint, y=cos 2t then prove that `(dy)/(dx)`=-sin t

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sint, y= cos2t then prove that (dy)/(dx)= -4sint

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

If y=a sin t, x=a cos t then find (dy)/(dx) .

If int_(y)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dx, the prove that (dy)/(dx)=(2sin x^(2))/(x cos y^(2))

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)