Home
Class 12
MATHS
" if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,...

`" if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,-cos^(2)x]]" and "B=[[sin^(2)x,cos^(2)x],[-cos^(2)x,-sin^(2)x]]" then find "A+B"`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

Find:int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

int(a^(2)sin^(2)x+b^(2)cos^(2)x)/(a^(4)sin^(2)x+b^(4)cos^(2)x)dx