Home
Class 11
MATHS
(1-omega+omega^(2))(1+omega-omega^(2))=4...

`(1-omega+omega^(2))(1+omega-omega^(2))=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1-omega-omega^(2))(1-omega+omega^(2))(1+omega-omega^(2))=8

(1-omega+omega^(2))^(2)+(1+omega-omega^(2))^(2)=-4

If 1, omega, omega^2 be three roots of 1, show that: (1-omega+omega^2)^2+(1+omega-omega^2)^2=-4

If 1,omega,omega^(2) are the cube roots of units then find (1-omega+omega^(2))^(4)+(1+omega-omega^(2))^(8)

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

If 1,omega,omega^(2) are cube roots of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) is equal to

If omega is complex cube root of unity (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is