Home
Class 12
MATHS
यदि A = [(2,-1,1),(-1,2,-1),(1,-1,2)] हो...

यदि `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` हो, तो सिद्ध कीजिये कि `A^(3) -6A^(2) + 9A - 4I = O`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A=[2-11-12-11-12]. Verify that A^(3)-6A^(2)+9A-4I=O and hence find A^(-1).

IF A = [{:( -2,3,-1),( -1,2,-1),( -6,9,-4) :}] and B = [{:( 1,3,-1),( 2,2,-1),( 3,0,-1) :}] then

If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)] , find (i) 2B-3C (ii) A-2B+3C .

यदि (x/3+1,y-2/3) = (5/3,1/3) हो, तो x और y का माना ज्ञात , कीजिये।

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

Find matrix A, if [(1,2,-1),(0,4,9)]+A=[(9,-1,4),(-2,1,3)]

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .