Home
Class 12
MATHS
|[3,1,2],[a,b,c],[a^(2),b^(2),c^(2)]|=...

`|[3,1,2],[a,b,c],[a^(2),b^(2),c^(2)]|=`

Text Solution

Verified by Experts

The correct Answer is:
`(a-b)(b-c)(c-a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

|(1,a^(2),a^(4)),(1,b^(2),b^(4)),(1,c^(2),c^(4))|=(a+b)(b+c)(c+a)|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Prove that |{:(" "3,a+b+c,a^2+b^2+c^2),(a+b+c,a^2+b^2+c^2,a^3+b^3+c^3),(a^2+b^2+c^2,a^3+b^3+c^3,a^4+b^4+c^4):}|=|{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}|^2

If |[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|=5, then the value of |[b_(2)c_(3)-b_(3)c_(2),a_(3)c_(2)-a_(2)c_(3),a_(2)b_(3)-a_(3)b_(2)],[b_(3)c_(1)-b_(1)c_(3),a_(1)c_(3)-a_(3)c_(1),a_(3)b_(1)-a_(1)b_(3)],[b_(1)c_(2)-b_(2)c_(1),a_(2)c_(1)-a_(1)c_(2),a_(1)b_(2)-a_(2)b_(1)]| is

|[a,a^(2),bc],[b,b^(2),ca],[c,c^(2),ab]|=|[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1