Home
Class 12
MATHS
Let f(x) = (1-tanx)/(4x-pi), x != (pi)/4...

Let `f(x) = (1-tanx)/(4x-pi), x != (pi)/4, x in [0,(pi)/2]`. If f(x) is continuous in `[0,(pi)/2]`, then `f((pi)/(4))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)] , if f(x) is continuous in [0, (pi)/(4)] , then f((pi)/(4)) is :

Let f(x)=(1-tan x)/(4x-pi), x ne pi/4, x in [0,pi/2]." If f(x) is continuous in "[0,pi/4]," then "f(pi/4)is

Let f(x)=(1-tan x)/(4x-pi),x!=(pi)/(4),x in[0,(pi)/(2)], If f(x) is continuous in [0,(pi)/(4)], then find the value of f((pi)/(4))

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

Find the value of 'a' so that If f(x) = (1 - tanx)/(4x -pi) , x ne (pi)/(4) , is continuous on (0, (pi)/(2)), " find f " ((pi)/(4)) .