Home
Class 11
MATHS
If log x: logy : log z = (y-z): (z-x): (...

If log x: logy : log z = (y-z): (z-x): (x-y), then

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x : log y : log z =(y - z): (z -x): (x - y), then

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

. If 1, log_y x, log_z y, -15 log_x z are in AP, then

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.