Home
Class 12
MATHS
int(dx)/((sqrt(1+x^2)-x)^n)(n!=+-1)=1/2(...

`int(dx)/((sqrt(1+x^2)-x)^n)(n!=+-1)=1/2(z^(n+1)/(n+1)+z^(n+1)/(n+1))+C` where (A) `x-sqrt(1+x^2)` (B) `x+sqrt(1+x^2)` (C) `-x+sqrt(1+x^2)` (D) `x-sqrt(1-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrt(1+x^(2))-x)^(n)dx

int(sqrt(1+x^2)-x)^n dx

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

int(x^(n-1))/(sqrt(1+4x^(n)))dx

int(x^(n-1)dx)/( sqrt(a^(n)+x^(n)))

int((a+sqrt(x))^(n))/(sqrt(x))dx,n!=-1

"int((a+sqrt(x))^(n))/(sqrt(x))dx,n!=-1

Evaluate intdx/(x+sqrt(1+x^2))^n,n!=+-1