Home
Class 11
MATHS
The range of f(x)=log(cosecx-1)(2-[sinx]...

The range of `f(x)=log_(cosecx-1)(2-[sinx]-[sinx]^2)` is (where [ ] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=log_(csc x-1)(2-[sin x]-[sin x]^(2)) is (where I l denotes the greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Number of integers in the range of f(x)=log_(e)[cos|x|+(1)/(2)], where [] denotes the greatest ineger finction,is

Find the domain and range of f(x)= log(1/sqrt([cosx]-[sinx])) . [.] denotes the greatest integar function.

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.