Home
Class 14
MATHS
If 2^(x)-2^(x-1)=4 then x^(x)=...

If `2^(x)-2^(x-1)=4` then `x^(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(5)=1(x!=1), then (x)/(1+x^(2))+(x^(2))/(1+x^(4))+(x^(3))/(1+x)+(x^(4))/(1+x^(3))

Solve :(x+(1)/(x))^(2)-(3)/(2)(x-(1)/(x))=4 when x!=0

If (3x^(3)-2x^(2)-1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)+kx+1) " then "k=

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

Simplify: 3/2x^2(x^2-1)+1/4x^2(x^2+x)-3/4x(x^3-1)

The number of real roots of sin (2^x) cos (2^x) =1/4 (2^x+2^-x) is

The number of real roots of sin(2^(x))cos(2^(x))=(1)/(4)(2^(x)+2^(-x)) is

The number of real roots of sin (2^x) cos (2^x) =1/4 (2^x+2^-x) is